Common Mistakes in Meta-Analysis
And How to Avoid Them
Common Mistakes in Meta-Analysis
And How to Avoid Them

Michael Borenstein
Biostat, Inc., New Jersey, USA

Biostat, Inc.
CONTENTS

1. PREFACE

CONTENTS

2. ACKNOWLEDGEMENTS

3. WORKSHOPS ON META-ANALYSIS

4. WEB SITES

4.1. WEB SITE FOR THIS BOOK

4.2. WEB SITE FOR THE SOFTWARE

4.3. WEB SITE FOR OUR WORKSHOPS

5. HOW TO READ THE PLOT

6. STATISTICAL MODELS FOR META-ANALYSIS

6.1. OVERVIEW

6.2. EACH MODEL IS APPROPRIATE FOR A SPECIFIC INFERENCE

7. MISTAKES IN CHOOSING A STATISTICAL MODEL

7.1. OVERVIEW

7.2. CHOOSING BETWEEN FIXED EFFECT (SINGULAR) AND RANDOM EFFECTS

7.3. CHOOSING BETWEEN FIXED EFFECTS (PLURAL) AND RANDOM EFFECTS

7.4. LIMITATIONS OF THE RANDOM-EFFECTS MODEL

7.5. KNAPP-HARTUNG ADJUSTMENT

7.6. META-ANALYSIS IN LEGAL APPLICATIONS

7.7. PUTTING IT ALL TOGETHER

8. ISSUES AND MYTHS ABOUT STATISTICAL MODELS
CONTENTS

13.11. **Subgroup Analysis** 224
13.12. **Meta-Regression** 229
13.13. **Publication Bias** 232

14. **How to Report the Results of an Analysis** 237

14.1. **Introduction** 237
14.2. **Methylphenidate for Adults with ADHD** 241
14.3. **High dose vs. Standard dose of Statins** 247
14.4. **Intervention to Prevent Alcohol Abuse** 253
14.5. **Prevalence of PTSD** 259
14.6. **Training Children to Avoid Sexual Abuse** 265
14.7. **Impact of Interventions on Truancy** 271
14.8. **Correlation Between Commitment and Performance** 277
14.9. **Viagra for Erectile Dysfunction** 283
14.10. **Second-hand Smoking and Lung Cancer** 289
14.11. **Weight Loss by Drug** 299

15. **Glossary** 307

16. **Appendix** 311

16.1. **Appendix I – How Statistical Model Affects Confidence Interval** 312
16.2. **Appendix II – Standard Error of the Summary Effect** 319
16.3. **Appendix III – How Statistical Model Affects Estimate of Mean** 321
16.4. **Appendix IV – Risk of Bias** 326
16.5. **Appendix V – Knapp-Hartung Adjustment** 328
16.6. **Appendix VI – Statistics for Heterogeneity** 334
16.7. **Appendix VII – Computing a Prediction Interval** 337
16.8. **Appendix VIII – Computing I²** 346
16.9. **Appendix IX – Pairwise Comparisons** 350
16.10. **Appendix X – Pooling Estimates of I²** 360

17. **References** 363

18. **Subject Index** 375
1. Preface

Most published meta-analyses include a plot that displays the effect size for each study, followed by a row that displays the summary effect size. This is called a forest plot, since it allows us to see “the forest and the trees” – the forest being the larger picture, and the trees being the individual studies.

Beginning in the early 1990s, a substantial number of papers referred to these as “Forrest” plots rather than “forest” plots, and one might ask why. It turns out that the eminent researcher Richard Peto had given a talk at a conference, and he noticed that Dr. Christine Forrest was in the audience. As a joke, Dr. Peto remarked that the plot had been named in honor of Dr. Forrest. Someone in the audience took this remark seriously, and used the spelling “Forrest” in their next publication. This spelling was copied once, then again, and soon became codified as the correct spelling in some journals (Lewis & Clarke, 2001).

In this anecdote, it is simple to see how the mistake originated and perpetuated itself. By contrast, there are many other mistakes that appear on a regular basis in the meta-analysis literature, where the origin of the mistake is less clear. Some of these have no more basis than the one cited above, yet have become the default way to do things. Unlike the Forrest mistake, some of these have profound implications for the analyses.

For example –

- Many researchers believe that if the impact of an intervention is statistically significant, we can assume that the intervention is effective in all populations. In fact, the intervention may be helpful in some populations and harmful in others.
- Most researchers report I^2 as an index of heterogeneity, and assume that I^2 values of 25%, 50%, and 75% reflect low, moderate, and high amounts of dispersion. This represents a fundamental misunderstanding of what I^2 actually tells us.
- Many researchers think that the confidence interval in a random-effects analysis tells us how widely the effects vary. It does not.
- Many researchers use a test for heterogeneity to decide whether to use a fixed-effect or random-effects model. This is invariably a mistake, and reflects a misunderstanding of what a statistical model means.
- Most researchers assume that if a test for publication bias is statistically significant, we can assume that bias exists. In fact, there are many reasons...
that the test might be statistically significant, and bias is only one of several plausible explanations.

Of course, the incorrect interpretation of the various statistics is not intentional. Rather, as in the Forrest example, it is simply what happens when people model their own reports on prior publications, and perpetuate mistakes. My goal in this volume is to call attention to mistakes that appear repeatedly in the meta-analysis literature. I explain what the mistake is, why it is a mistake, and how to avoid the mistake.

In each section I start with an overview that provides context for understanding the issue discussed in that section, and list the common mistakes in that area. Then, each of the mistakes is addressed in detail, along with examples and solutions. Those who are looking for a simple fix will find it, and those who want more detail can study the examples. There is also an appendix with additional information on the statistical issues.

At the end of the volume I have included a section with examples of how I would transcribe the results section of an analysis. In these examples I implement the suggestions outlined in the prior chapters. These can serve as templates for your own analyses.

To illustrate the various mistakes, I have included examples from the published literature. I sincerely hope that I have not offended people by using their papers in this way, and would like to make the following points.

- If I included an example of a mistake, it is NOT an isolated mistake. Every mistake cited in this volume has been repeated many times in the published literature.
- I avoided picking examples from meta-analyses that were performed poorly. Rather, I tried to pick examples from analyses that were generally of a high standard but nevertheless included the mistake in question. If your analysis is included here, it is one of the better analyses I have seen.

If anyone still feels offended, I do apologize. I made many of these same mistakes myself when I started working in this field. I would still be making those mistakes to this day, except that I was fortunate enough to have colleagues who provided guidance and clarity. I hope this book serves that same purpose for others.

Michael Borenstein

New York City, 2019
2. ACKNOWLEDGEMENTS

One of the pleasures that comes with drafting a book is the opportunity to say thank you. I would like to say thank you to Larry Hedges, Julian Higgins and Hannah Rothstein. It has been a pleasure to work with them on developing the computer program Comprehensive Meta-Analysis (CMA), the text Introduction to Meta-Analysis, and a series of papers. Many of the ideas in this volume originated in conversations I have had with them over these past many years. As much as I value our professional relationships, I value their friendship even more.

I would like to acknowledge colleagues who spent substantial amounts of time commenting on earlier drafts of this book. In addition to Larry and Julian, these include Harris Cooper, Emily Tanner-Smith, and Alex Sutton. Their comments improved the book substantially, but the responsibility for the content remains mine alone. I am also indebted to Steven Tarlow, who copy-edited the book and checked the formulas and examples.

Michael Borenstein

New York, 2019
3. **WORKSHOPS ON META-ANALYSIS**

I teach meta-analysis workshops on a regular basis, and the conversations in these workshops played an important role in the development of this volume. I would like to express my gratitude to the researchers who attended these workshops for helping me to understand what issues needed to be addressed in this volume, and for the discussions that helped me to clarify my own perspective on these issues.

For more information about these workshops, please visit www.Meta-Analysis-Workshops.com.
4. **WEB SITES**

4.1. **Web site for this book**

This site includes the datasets used in this book, along with additional details for the worked examples. You can also submit questions here.

4.2. **Web site for the software**

www.Meta-Analysis.com

This site provides information on our software, Comprehensive Meta-Analysis (CMA).

4.3. **Web site for our workshops**

www.Meta-Analysis-Workshops.com

This site provides information about our workshop content and schedule. We plan to offer an online course here as well.

Please register

Enter your e-mail at any of these sites. We will send updates to the materials in this volume, and information on workshops.
5. HOW TO READ THE PLOT

In this book I make extensive use of plots. The plots are annotated with labels that follow a consistent format, as outlined here.

For example, Figure 1 shows the impact of corticosteroids on mortality for patients with severe sepsis and septic shock (Annane et al., 2004). All patients received standard drugs, and those in the treatment group received corticosteroids as well. The effect size is the risk ratio, with values less than 1.0 favoring treatment.

When we perform a meta-effects analysis, we typically have two distinct goals.

- One goal is to estimate the mean effect size. This goal is addressed by lines [A] and [B], which present the mean effect size along with a confidence interval. A narrow confidence interval tells us that we know the mean effect size precisely, whereas a wide confidence interval tells us that our estimate of the mean is imprecise. Line [A] applies if we intend to report the mean for the studies in the analysis and not generalize beyond them. Line [B] applies if we intend to report the mean for the universe of all comparable studies.
- A second goal is to estimate the dispersion of effects. This goal is addressed by line [C], which presents the prediction interval. A narrow prediction interval tells us that the impact of the intervention is relatively consistent across populations. A wide prediction interval tells us that the impact of the intervention varies across populations.
Critically, the confidence interval on lines [A] and [B] is an index of *precision*. It tells us how precisely we have estimated the mean effect. By contrast, the prediction interval on line [C] is an index of *dispersion*. It tells us how widely the effect the effect size varies.

The distinction between lines [A] and [B] depends on the statistical model, and is discussed in sections 6 and 7. The difference between confidence intervals and prediction intervals is discussed in section 9.4.
9. HETEROGENEITY

9.1. Overview

9.1.1. What do we mean by heterogeneity?

The term “heterogeneity” refers to the dispersion of true effects across studies. Typically, the studies in a meta-analysis will differ from each other in various ways. Each study is based on a unique population, and the impact of any intervention will typically be larger in some populations and smaller in others. The specifics of the intervention may vary from study to study, the scale used to assess outcome may vary from study to study, and so on. Each of these factors may have an impact on the effect size. One goal of the analysis will be to determine how much the effect size varies across studies, and this is variation is called heterogeneity (Ades, Lu, & Higgins, 2005; P. Glasziou & Sanders, 2002; J. Higgins, Thompson, Deeks, & Altman, 2002; J. P. Higgins et al., 2009; Keefe & Strom, 2009; Thompson, 1994).

9.1.2. Heterogeneity in a primary study

The basic idea of heterogeneity in a meta-analysis is similar to that in a primary study. Consider a primary study to assess the distribution of math scores in a high-school class. Suppose that the mean score across all students in the class is 50. To understand how the students are performing we also need to ask about heterogeneity, and we typically do so by reporting the standard deviation of scores. We understand that 95% of all students will score within two standard deviations of the mean. Therefore –

A. If the standard deviation is 5 points, most students will score between 40 and 60.
B. If the standard deviation is 10 points, most students will score between 30 and 70.
C. If the standard deviation is 20 points, most students will score between 10 and 90.
These intervals are called prediction intervals. If someone asked us to predict the score for a student in the class (selected at random from the class), in case A we would predict the student would score in the range of 40 to 60, and we would be correct some 95% of the time. The same idea applies to cases B and C.

When we perform a primary study, we compute several other statistics related to heterogeneity, such as the sum of squares and the variance. These are all important statistics, but if we want to know how much the scores vary, these statistics are tangential, at best. The only statistics that directly address this question are the standard deviation and prediction interval.

9.1.3. Heterogeneity in a meta-analysis

The same ideas apply when we turn to meta-analysis. For example, consider the following.

Castells et al. (2011) conducted a meta-analysis of seventeen studies to assess the impact of methylphenidate in adults with Attention Deficit Hyperactivity Disorder (ADHD). Patients with this disorder have trouble performing cognitive tasks, and it was hypothesized that the drug would improve their cognitive function. Patients were randomized to receive either the drug or a placebo, and then tested on measures of cognitive function. The effect size was the standardized mean difference between groups on the measure of cognitive function.

In this context –

• A standardized mean difference of 0.20 would represent a trivial effect size. While this difference would be captured by the test, it is so small that the patient might not be aware of any change.
• A standardized mean difference of 0.50 would represent a moderate effect size. The patient would be aware of a clinically important change, and some co-workers might notice the change as well.
• A standardized mean difference of 0.80 would represent a large effect size. The patient would be pleasantly surprised by the improvement, and some co-workers would be likely to remark that something was different.

It turns out that the mean effect size is 0.50. On average, across all comparable populations, the drug increases cognitive functioning by one-half a standard deviation. But to understand the potential utility of the drug we also need to ask about heterogeneity.
Figure 21 | Effect size varies from 0.40 to 0.60

Figure 22 | Effect size varies from 0.30 to 0.70

Figure 23 | Effect size varies from 0.10 to 0.90
Consider three possible results for the meta-analysis, listed here as A, B, and C. In all cases the mean impact is 0.50, but the consistency of the impact varies.

A. The impact is as low as 0.40 in some populations, and as high as 0.60 in others (Figure 21).
B. The impact is as low as 0.30 in some populations, and as high as 0.70 in others (Figure 22).
C. The impact is as low as 0.10 in some populations, and as high as 0.90 in others (Figure 23).

We might make the following decisions about the utility of the drug in the three cases.

A. We can expect to see pretty much the same effect in all populations.
B. The impact will vary somewhat across populations, but from a clinical perspective we can still talk about a common effect size.
C. The impact varies substantially across populations. It would be important to establish where the impact is trivial, moderate, and high, so that we can target this intervention more effectively. However, since the impact is always positive, we could use this intervention immediately.

These judgments are subjective. For example, we can discuss whether to recommend the intervention in case C, where the effect will be trivial in some populations. What is clear though, is that when we discuss the potential utility of the drug, it should be based on this type of information.

9.1.4. The sources of confusion

While basic idea of heterogeneity is the same in a meta-analysis and a primary study, there are a few technical details that differ between the two.

In a primary study (when we have one score for each subject) we typically treat the observed score for each subject as being the same as the true score for that subject. If a student scores 40 on the test, we treat 40 as being that student’s true score. We compute the variance, standard deviation and prediction interval for the observed scores, and these serve also as the values for the true scores as well.

By contrast, in the case of a meta-analysis we make a distinction between the observed effect size and the true effect size for each study. The observed effect size is the effect size that we see in the sample. The true effect size is
the effect size that we would see if we could somehow enroll the entire population in the study. The observed effect size serves as an estimate of the true effect size but invariably falls below or above the true effect size due to sampling error.

The variance of observed effects tends to be larger than the variance of true effects. To understand why, consider what would happen if we ran five studies based on the same population, and computed the effect size in each. The true effect size is the same in all five studies (all studies are estimating the effect size in the same population) and so the variance of true effects is zero. Yet, the observed effects will differ from each other because of sampling error, and so the variance of the observed effects will be greater than zero. While this is most intuitive in the case when the variance of true effects is zero, it applies also when the true effects vary. The variance of observed effects tends to exceed the variance of true effects.

The ADHD analysis serves as a case in point. Figure 24 shows two plots. The inner plot shows the dispersion of true effects, while the outer plot shows the dispersion of observed effects. We see the outer plot, but we care about the inner plot since the inner plot tells us how much the effect size really varies across populations.

![Figure 24 | Dispersion of observed effects (outer) and true effects (inner)](image)

The heterogeneity statistics typically reported for a meta-analysis include the Q-value, a p-value, I-squared (I^2), Tau-squared (T^2), and Tau (T). The definition of each, and the relationships among them are presented in Appendix VI. The point I need to make here is that many of the statistics that are typically reported are tangential to the one issue we really care about, which is How much does the effect size vary. We need to be clear about what
each statistic means, and then focus on the ones that are relevant to this question.

On the pages that follow, I address various issues including the following

- Researchers sometimes assume that heterogeneity diminishes the utility of the analysis. The reality is more complicated.
- The one statistic that offers an unambiguous report of the dispersion is the prediction interval. Researchers rarely report this interval, and sometimes confuse it with the confidence interval.
- Researchers often treat the I^2 statistic as being synonymous with heterogeneity. In some cases, the I^2 statistic is used to classify heterogeneity as being low, moderate, or high. In fact, the I^2 statistic does not tell us how much the effect size varies, and the idea of classifying heterogeneity into these categories without additional context is meaningless.
- Researchers sometimes use the Q statistic or the p-value for a test of heterogeneity as indices of heterogeneity. This is a mistake.
9.2. Heterogeneity is bad

9.2.1. Mistake

Heterogeneity refers to the fact that the true effect size varies across studies. Some researchers believe that heterogeneity diminishes the utility of the analysis. In an extreme version of this idea, some have asserted that when the effect sizes are heterogeneous, it is a bad idea to perform a meta-analysis at all. The truth is more complicated.

9.2.2. Details

Heterogeneity is not inherently good or bad, but it does affect what we can learn from the analysis. If our goal in the analysis is to report that the intervention increases scores by a certain value, then heterogeneity is indeed a problem. In the absence of heterogeneity, we can report a common effect size that applies to all populations. In the presence of heterogeneity, there is no common effect size and so we cannot meet this goal.

However, in the presence of heterogeneity we can assess the extent of heterogeneity and report, for example, that the effect size is as low as 0.05 in some populations and as high as 0.95 in others. If this is the true state of affairs, then this should be the goal of the analysis.

9.2.3. Heterogeneity affects what we can learn from the analysis

If the between-study heterogeneity is trivial, then the meta-analysis may provide definitive information about the utility of the intervention for all comparable populations.

For example, Cannon et al. (2006) conducted a meta-analysis of studies that compared a high-dose of statins vs. a standard dose for prevention of cardiovascular events (Figure 25). The mean risk ratio was 0.849 (patients assigned to a high dose were 15% less likely to have an event), and this effect size was essentially the same for all studies. On this basis, the mean effect size is a useful indicator of the effect size for all comparable populations.
By contrast, if the between-study heterogeneity is substantial, the meta-analysis will not be able to provide definitive information about the utility of the intervention in any given population, but it may be able to provide important information about the variation in effect size.

For example, Castells et al. (2011) conducted a meta-analysis of studies that assessed the impact of methylphenidate vs. placebo on the cognitive functioning of adults with attention deficit hyperactivity disorder (ADHD). The mean effect size was a standardized mean difference of roughly 0.50, but the effect size varied substantially across studies (Figure 28). As indicated by line [C], there were some populations where the effect size was 0.05 (which would represent a trivial effect in this context), some where it was near 0.50 (a moderate effect) and some where it was 0.95 (a very large clinical effect). In this case, the mean is not a useful indicator of the effect size we can expect to see in any given population, since the effect size in most populations falls some distance from the mean. Rather, the take-home message from this analysis might be that the treatment effect varies substantially. Therefore, we need to identify factors associated with this variation.

In this context, it would be important to clarify two related issues.

First, the suggestion that we can speak of heterogeneity as being present or absent is a misnomer, since it implies that some sets of studies are heterogeneous while others are not. In a systematic review based on studies that are pulled from the literature, especially when the studies assess the impact of an intervention, the true effect size will almost always be larger in some cases than in others. So, when we ask about the impact of heterogeneity, we are not asking about zero heterogeneity vs. some heterogeneity. Rather, we are asking about trivial heterogeneity vs. substantive heterogeneity.
Second, I said that when heterogeneity is trivial, the mean effect size provides definitive information about all comparable studies. This statement comes with some important caveats.

A. This refers to the true heterogeneity, not the estimated heterogeneity. The fact that heterogeneity is estimated as being trivial (or zero) does not necessarily mean that the true heterogeneity is trivial.

B. The description of heterogeneity as being trivial or substantive refers to the practical impact of the intervention rather than some statistical index. The researcher (or reader) would need to decide what amount of dispersion is of practical importance.

C. The statement that the mean effect size applies to all comparable studies is more useful in theory than in practice. In practice, it may not be clear what studies are comparable to those in the analysis.

9.2.4. The good folks of New Cuyama

At a conference in London to mark the 30th anniversary of the paper by DerSimonian and Laird which introduced their method for estimating heterogeneity, Dr. Laird was asked what she considered to be “too much” heterogeneity. She responded by showing the photo in Figure 27.
The good folks in the town of New Cuyama erected a sign that captured some key statistics. The population is 562, the town is 2150 feet above sea level, and the town was established in the year 1951. They summed these statistics and report the total is 4663.

![Figure 27 | An example of “Too much heterogeneity”](image)

Dr. Laird said that this would be an example where people had gone too far. But in most cases, heterogeneity is not a problem if we treat it appropriately.

Summary

The suggestion that we should not perform a meta-analysis in the presence of heterogeneity is based on the false premise that the goal of an analysis is always to estimate the *mean* effect size. In fact, the goal of an analysis is to estimate the *pattern* of effects. If the effect size is reasonably consistent across studies, we can report that the effect size is consistent and then focus on the mean. If the effect size varies across studies, we can discuss the extent of variation and what this says about the utility of the intervention. We might also try to explain some of the variation.
9.3. **The prediction interval**

9.3.1. **Mistake**

The prediction interval addresses the question *we intend to ask* when we ask about heterogeneity. It tells us how the true effect size varies across populations, and it does so on a scale that allows us to address the utility of the intervention. The mistake that researchers make is that they neglect to report this interval.

9.3.2. **Details**

The following examples show how the prediction interval addresses the issue of heterogeneity in a concise and intuitive format.

9.3.3. **Example | Effect of methylphenidate on cognitive function in adults with ADHD**

Castells et al. (2011) looked at 17 studies that evaluated the effect of methylphenidate on cognitive function in adults with ADHD (Figure 28). The effect size is the standardized mean difference (d). For purposes of this discussion I will assume that an effect size of 0.20 is small (it would show up on a test but the patient might not notice the change), an effect size of 0.50 is moderate (the patient would recognize that something was different), and that an effect size of 0.80 is large (colleagues would recognize the change).

The mean effect size is roughly 0.50 with a confidence interval [B] of 0.35 to 0.65. The confidence interval is an index of precision, and tells us how precisely we have estimated the mean effect size. Here, the entire confidence interval falls within the “moderate” range (as defined above), so we can report that the *mean* effect size is moderate.

The prediction interval [C] is roughly 0.05 to 0.95. The prediction interval is an index of dispersion, and tells us how widely the true effect size varies. Here, we would expect that in some 95% of all populations, the true effect size will fall in the range of 0.05 to 0.95. Using the categories outlined above, the effect size would fall between trivial and moderate in half the cases, and between moderate and large in the other half. Of note, there are no populations where the impact would be harmful. (Note that the terms moderate and large here refer to the clinical impact of the treatment and not to the extent of dispersion.)
The prediction interval allows us to address the questions that we typically have in mind when we ask about heterogeneity (Borenstein, Higgins, Hedges, & Rothstein, 2017; IntHout, Ioannidis, Rovers, & Goeman, 2016). To wit—

- Researchers typically report statistics such as Q, I^2, and T^2, but none of these tells us how much the effect size varies. Here, Q is 30.106 with 16 degrees of freedom, I^2 is 47%, and T^2 is 0.039. Based on this information, few readers would have any sense of the dispersion in effects.
- By contrast, the prediction interval reports the extent of the dispersion in the same units as the effect size. The effect size varies over roughly 90 points (in d units) and we understand what that means.
- Additionally, the prediction interval reports the dispersion using absolute values. It tells us not only that the effects vary over roughly 90 points, but also that the specific range of values is 0.05 to 0.95 (rather than -0.45 to $+0.45$, for example). The treatment is very helpful in some cases and minimally helpful in others, but there are no populations within the prediction interval where the treatment is likely to be harmful.
Based on this interval we might decide that –

- In the absence of further information, it would be reasonable to use the drug for all comparable populations.
- We should pursue additional research to identify the factors that are related to the impact of the drug. If it turns out that the drug is more effective in some populations than others, we would want to target those populations. If it turns out that the drug is more effective in certain doses than in others, we might be able to use the drug more effectively.

These types of decisions are subjective, but it should be clear that a meaningful discussion about the potential utility of the treatment would be based on the information contained in the prediction interval. By contrast, if we had simply reported Q, T^2 or I^2, the extent of dispersion would not be known, and it would not be possible to have this discussion (see section 9.5).

9.3.4. Example | Impact of GLP-1 mimetics on blood pressure

Katout et al. (2014) looked at the impact of GLP-1 mimetics on diastolic blood pressure (Figure 29). The numbers that follow are based on our reanalysis of the data, and differ slightly from the original report due to rounding error.

The effect size index is the raw difference in mean blood pressure, with values below zero indicating a beneficial effect. The mean effect size is -0.473, with a confidence interval of -1.195 to $+0.248$ [B]. The confidence interval is an index of precision, and tells us how precisely we have estimated the mean effect size. Here, the confidence interval includes zero, so we cannot reject the null hypothesis that the mean effect size is zero.

The prediction interval [C] is roughly -4.08 to $+3.13$. The prediction interval is an index of dispersion, and tells us how widely the true effect size varies. When the effects vary this widely, the mean is largely irrelevant. This is especially true if the intervention is helpful in some cases and harmful in others. The take-home message here would be that we need to understand where the treatment is helpful, and where it is harmful.

Critically, only the prediction interval allows us to address the questions that we typically have in mind when we ask about heterogeneity. That is –

- The Q-value is 4084.467 with 26 degrees of freedom, I^2 is 99.363%, and T^2 is 2.933. None of these gives us any sense of the actual dispersion.
• The prediction interval reports the extent of the dispersion in the same units as the effect size (mmHg), and we understand what a range of 7 points means on this scale.

• The prediction interval reports the dispersion using absolute values. It tells us not only that the effects vary over roughly 7 mmHg, but line [C] shows that the treatment helpful (less than zero) in roughly 60% of populations and harmful (greater than zero) in the other 40%.

Based on this interval we might decide that this treatment is potentially useful in some cases, but we need to determine where it will be helpful and where it will be harmful. For example, it may be helpful in specific types of patients, or in specific variants of the intervention.

When we present the prediction interval, the actual extent of dispersion is clear, and we can discuss the clinical implications of this dispersion. By contrast, if we had simply reported T^2 or I^2, the extent of dispersion would not
be known, and it would not be possible to have this discussion (see section 9.5).

9.3.5. **When \(\tau^2 \) is estimated as zero**

The prediction interval speaks to the dispersion in effects, and for that reason only applies when the estimate of the variance (\(T^2 \)) is greater than zero. When the estimate of \(T^2 \) is zero, we generally would report the mean and confidence interval, but not the prediction interval.

9.3.6. **Example | High dose vs. standard dose of statins**

For example, Cannon et al. (2006) used a meta-analysis to synthesize data from four studies that compared the impact of a high dose vs. a standard dose of statins in preventing cardiovascular events (Figure 30). The mean risk ratio of 0.849 tells us that the high dose was more effective than the standard dose in preventing the events.

In this analysis, \(\tau^2 \), the variance of true effects, was estimated as zero. When \(\tau^2 \) is estimated as zero we can generally assume that this is an underestimate and the actual value of \(\tau^2 \) is positive. Nevertheless, we assume that the true variance is trivial, and proceed accordingly. Here we would report that the mean effect size in the universe of comparable populations falls in the interval 0.786 to 0.917, and that there is no evidence that the effect size varies across studies.

As always, the confidence interval is an index of precision, not an index of dispersion. The fact that the confidence interval is 0.786 to 0.917 does not tell us that the effect size varies from 0.786 in some populations to 0.917 in
others. Rather, we assume that the true effect size is roughly the same in all populations. This *common* effect size is assumed to fall somewhere in this range. Since we assume that the effect size is roughly the same for all populations, we omit the prediction interval [C].

9.3.7. Computing prediction intervals

I describe the prediction interval by reporting (for example) that the effect size ranges from 0.05 in some populations to 0.95 in others. To be clear, this is not simply a report of the lowest and highest effects. Rather, the basic approach to computing prediction intervals is to use the mean plus or minus two standard deviations, which is the same approach we would take in a primary study. However, there are some technical issues that we need to address. For *all* effect-size indices we need to expand the intervals to take account of the fact that the mean and standard deviation are estimated with error. For *some* effect-size indices we need to transform the values into another metric before computing the intervals.

In Appendix VII, I present the formulas for computing prediction intervals that address both issues. As a practical matter, it is much simpler to use a spreadsheet for the computations. This spreadsheet may be downloaded on the book’s web site. This spreadsheet may be used as an adjunct to any computer program, since it requires the user to enter only four items (the number of studies, the mean effect size, the upper limit of the confidence interval, and T^2).

9.3.8. Some caveats regarding the prediction interval

All the analyses we perform as part of a meta-analysis (or any analysis, for that matter) require that some assumptions be met. If these assumptions are violated, the results may not be reliable. In the case of prediction intervals, we need to keep the following in mind.

The interval will be reasonably accurate if it is based on enough data. The minimum number of studies needed to compute a useful prediction interval would depend on the extent of heterogeneity, but would likely be at least ten in many cases (Hedges & Vevea, 1998). It would be reasonable to have more faith in the accuracy of the interval as the number of studies increases.

When computing the prediction interval, we typically assume that the effects are normally distributed. However, in practice this will not always be the case. For example, (Hackshaw, Law, & Wald, 1997) looked at the
relationship between second-hand smoke and lung cancer. On average, exposure to second-hand smoke is associated with an increased risk in lung cancer, but if we compute a prediction interval and assume that the distribution of true effects is normally distributed (in log units), we would conclude that in some small minority of cases exposure is associated with a decreased risk of lung cancer. Here, it makes more sense to assume that the distribution is truncated at a risk ratio of 1.0.

Importantly, the prediction interval applies to the universe from which the studies were drawn, and this may not be the same as the universe that we had in mind when we planned the systematic review (IntHout et al., 2016). Both the mean and the standard deviation of effects will depend on the specific mix of populations reflected in the included studies, and so will the prediction interval which is based on these statistics (see section 7.4).

The spreadsheet cited above expands the interval to take account of the imprecision of the estimate, and make it more likely that the interval covers some 95% of all populations. Since the goal of this approach is to ensure that most populations are included under the interval, it always errs on the side of expanding (rather than narrowing) the interval. As such, it may exaggerate the true extent of the dispersion.

9.3.9. The prediction interval is only a first step

The prediction interval allows us to quantify the extent of dispersion, but is not intended to explain that dispersion. When the prediction interval tells us that the impact of treatment varies substantially, we know that we need more information to use the intervention effectively. In the ADHD analysis, we need to know where the drug’s impact is trivial and where it is substantial. In the GLP-1 example, we need to know where the treatment is helpful and where it is harmful. If we have enough studies in the meta-analysis, we might be able to use subgroup analysis or meta-regression to see which factors are associated with the effect size, and develop hypotheses to be tested in future research.

9.3.10. The normal curve

There is no convention for how to display the prediction interval on a plot. In this book I generally superimpose a line under the forest plot. For example, in Figure 28 the prediction interval for the ADHD analysis is displayed as a line [C] that extends from 0.05 to 0.95.
However, we also have the option of constructing a normal curve for the prediction interval, as in Figure 31, which is also based on the ADHD analysis. In this figure line [C] denotes the part of the curve which captures the effect size in some 95% of all populations. The sections of the plot to the left and right of line [C] correspond to the 5% of effects that fall outside the 95% prediction interval. Line [C] in Figure 31 is the same as line [C] in Figure 28. However, Figure 31 highlights the fact that most populations will have an effect size toward the center of the curve, with relatively few near the extremes.

The web site includes an Excel spreadsheet that can be used to create this plot. To use the plot, the user needs to enter only the mean effect size, the upper limit of the confidence interval, Tau-squared, and the number of studies. Since all programs report these values, the spreadsheet can be used as an adjunct to any software for meta-analysis.

![Figure 31 | Distribution of true effects and prediction interval](image)

9.3.11. Reliability of the prediction interval

As noted above, the prediction interval will not be reliable when based on a small number of studies. To be clear, the problem of trying to estimate the prediction interval with too few studies applies also to the other indices, including T^2, T, and F. So, if we are concerned that we do not have enough studies, switching to one of those indices is not a useful option. Ironically, the poor precision for T^2 and F has few practical problems because people do not actually use those values in any meaningful way. By contrast, the prediction interval does present information in an intuitive format, and so reporting incorrect values for this interval can have real repercussions. For
that reason, it might be best to only report the interval when we have enough studies to ensure that the estimate is reasonably precise.

Summary

When we ask about heterogeneity, what we have in mind is “What is the actual range of effects.” The statistics typically reported for heterogeneity (such as I^2) do not address this question.

The one statistic that does provide this information is the prediction interval. The prediction interval tells us the range of effects in the same metric that we use for the effect size, so that we understand the range of dispersion. Critically, it tells us the range of effects on an absolute scale, so we know (for example) if the impact ranges from moderate to large, or from trivial to moderate, or from harmful to helpful.

The accuracy of the prediction interval (and all other indices of heterogeneity) depends in part on the number of studies in the analysis. When the analysis includes at least ten studies, the prediction interval is likely to be accurate enough to be useful.

A spreadsheet for computing the prediction interval is available on the book’s website.
9.4. **Prediction interval vs. confidence interval**

9.4.1. **Mistake**

The summary effect in a forest plot is typically displayed as a point estimate with a confidence interval. Researchers sometimes assume that the confidence interval corresponds to the dispersion of effects. In a variant of this mistake, the forest plot will be used to display one confidence interval for the fixed-effect model and a second (wider) confidence interval for the random-effects model. Readers sometimes assume that the additional width of the random-effects confidence interval corresponds to the dispersion of effects. In either case, this is a fundamental mistake.

9.4.2. **Details**

The confidence interval and the prediction interval are two entirely separate indices. They address two entirely distinct issues.

When we perform a meta-effects analysis, we typically have two distinct goals.

- One goal is to estimate the *mean* effect size. The confidence interval is an index of precision, and tells us how precisely we have estimated the mean. A confidence interval of 40 to 60 tells us that the mean effect size in the universe of comparable populations falls somewhere in this range. (More accurately, in 95% of all meta-analyses the mean effect size will fall within the confidence interval).
- A second goal is to estimate the *dispersion* of effects. The prediction interval is an index of dispersion. A prediction interval of 25 to 75 tells us that the true effect size will be as low as 25 in some populations, and as high as 75 on others.

Figure 32 shows a fictional set of studies for a meta-analysis to assess the impact of tutoring. In these studies, students are randomized to receive tutoring or to a control group, and we assess their scores on a math test. The effect size is the raw difference in means between groups. The mean difference is 50 points, which tells us that the tutoring increases the mean score by this amount.
At the bottom of the plot are two diamonds. The first diamond shows the confidence interval for the fixed-effect model, while the second diamond shows the confidence interval for the random-effects model. The first diamond has a width of 7.5 points while the second has a width of 20 points. Researchers sometimes assume that the span for the random-effects model tells us that the effects are dispersed over this (wider) range. This is incorrect – both diamonds speak only to the precision of the estimate for the mean.

- The confidence interval labeled “FE” is based on the standard error for the fixed-effect model or the fixed-effects model. If all studies are sampled from the same population (fixed effect) or if we are reporting the mean for the studies in the analysis only and not for a wider universe of comparable studies (fixed effects), in 95% of all analyses this confidence interval will include the true effect size for the population(s) in question. This interval has a width of 7.5 points. This is also labeled [A] in keeping with the conventions of this volume (see section 5).
- The confidence interval labeled “RE” is based on the standard error for the random-effects model. If the studies are sampled from different populations, and we are generalizing to the universe of comparable populations, in 95% of all analyses this confidence interval will include
the true mean effect size for the universe. This interval has a width of 20 points. This is also labeled [B] in keeping with the conventions of this volume.

The second diamond is wider than the first because it includes an additional source of sampling error. Under the fixed-effect (singular) model the error comes from the fact that we are sampling people from a specific population. Similarly, under the fixed-effects (plural) model the error comes from the fact that we are sampling people from a fixed set of populations. By contrast, under the random-effects model the error comes from the fact that we are sampling people from populations, and additionally sampling populations from a universe of populations. Critically, the additional width in the second diamond reflects additional error that comes from a second level of sampling. It tells us nothing about how widely the effects are actually dispersed.

Rather, to address the dispersion of effects we turn to the prediction interval, which is denoted as “PI”. The prediction interval is 50 points wide. We expect that in some 95% of all relevant populations, the treatment will increase scores by at least 25 points to as much as 75 points. This is also labeled [C] in keeping with the conventions of this volume.

In this example I displayed the confidence intervals using a diamond rather than a horizontal line. This is the format used by many computer programs (and included as an option in CMA). However, when used for this purpose the diamond has precisely the same meaning as the simple line.

For a fixed-effect or fixed-effects analysis we would display line [A] only. For a random-effects analysis we would display lines [B] and [C] only. I display all three here for pedagogical reasons.

Below, I present examples based on real data.

9.4.3. Example | Prevalence of ADHD in patients with SUD

van Emmerik-van Oortmerssen et al. (2012) looked at prevalence of ADHD in patients with SUD (substance abuse disorder). On the plot (Figure 33) –

- The confidence interval for the fixed-effect model [A] tells us that the mean prevalence in this set of thirty studies falls in the range of 0.235 to 0.257.
- The confidence interval for the random-effects model [B] tells us that the mean prevalence in the universe of comparable populations falls in the range of 0.194 to 0.272.
The prediction interval [C] tells us that the prevalence in any single population is as low as 0.082 in some, and as high as 0.500 in others.

In this example, the random-effects confidence interval [B] spans eight points while the prediction interval [C] spans forty-two points. Clearly, to conflate one with the other would be a serious mistake.

Figure 33 | Prevalence of ADHD in patients with SUD

9.4.4. Example | Augmenting clozapine with a second antipsychotic

Taylor, Smith, Gee, and Nielsen (2012) looked at the impact of augmenting clozapine with a second antipsychotic (Figure 34). The effect size index is the standardized mean difference (d).
The confidence interval for the fixed-effect model extends 0.151 on either side of the mean [A]. This tells us that the mean effect in this specific set of fifteen studies falls in the range of \(-0.349\) to \(-0.052\).

The confidence interval for the random-effects model extends 0.213 on either side of the mean [B]. This tells us that the mean effect in the universe of comparable populations falls in the range of \(-0.452\) to \(-0.026\).

The prediction interval extends 0.590 on either side of the mean [C]. This tells us that the effect size in any one population will could be as low as \(-0.83\) (improving function by 0.83 units) or as high as +0.35 (harming function by 0.35 units).

We can say that the mean effect is “Helpful” on average since the confidence interval for the mean falls entirely to the left of zero. However, in any single population the effect could be either helpful or harmful since the prediction interval includes values on both sides of zero. What should be clear, is that the confidence interval and the prediction interval are addressing two entirely distinct issues, and to conflate one with the other would be a serious mistake.
9.4.5. **Example | Impact of GLP-1 mimetics on blood pressure**

Katout et al. (2014) looked at the impact of GLP-1 mimetics on diastolic blood pressure (Figure 35). Mean differences less than zero indicate that the treatment was effective in lowering blood pressure. The numbers that follow are based on our re-analysis of the data, and differ slightly from the original report, due to rounding error.

![Figure 35 | GLP-1 mimetics and diastolic BP | Mean difference < 0 favors treatment](image)

- Under the fixed-effect model the confidence interval extends roughly 0.05 units on either side of the mean [A]. This tells us that we can estimate the mean effect for the studies in the analysis within 0.05 units.
- Under the random-effects model the confidence interval extends roughly 0.72 units on either side of the mean [B]. This tells us that we can estimate the mean effect in universe of comparable studies within 0.72 units.
The prediction interval extends 3.65 units on either side of the mean \([C]\). This tells us that the effect size in any given population will usually fall with 3.65 units of the mean, in the range of \([-4.08\) to \(+3.13\).

As always, it would be a serious mistake to conflate the confidence interval with the prediction interval. These are two different indices that address two entirely different elements of the analysis.

9.4.6. Impact of additional studies

It is instructive to consider what happens to the confidence interval and to the prediction interval when we add studies to the analysis.

The confidence interval tells us how precisely we can estimate the mean effect size. As we add studies to the analysis, our estimate of the mean tends to become more precise. Therefore, the confidence interval tends to become narrower.

The prediction interval tells us how widely the treatment’s effect varies from one population to another. If there are some populations where the treatment’s effect is as low as 0.10 and some where the effect is as high as 0.90, then this is true regardless of how many studies we include in our sample. Therefore, as we add comparable studies to the analysis, the prediction interval tends to remain essentially unchanged (except for small changes as the estimate becomes more precise).

9.4.7. Formulas

The confidence interval is based on the mean effect size and the standard error of the mean effect size. By contrast, the prediction interval is based on the mean effect size and the standard deviation of the effect size. The confidence interval for the mean may be computed as

\[
CI_M = M \pm 1.96(SE),
\]

where \(M\) is the sample mean and \(SE\) is the standard error of the mean. By contrast, the prediction interval may be computed as

\[
PI = M \pm 1.96(T),
\]

where \(T\) is the standard deviation of the true effects.
The formula for the confidence interval (5) is the same for the fixed-effect and the random-effects model, in that both are based on the mean and the standard error of the mean. Where they differ is in the computation of the standard error (SE). For the fixed-effect model, the SE reflects sampling error based on within-study variance, whereas for the random-effects model, the SE reflects sampling error based on within-study variance and between-study variance. In the case where the effect size is the score in one group, the within-study variance is the same for all studies, the standard error for the fixed-effect model is

$$SE = \sqrt{\frac{V}{N}}, \tag{7}$$

and for the random-effects model is

$$SE = \sqrt{\frac{V + \frac{T^2}{k}}{N}}, \tag{8}$$

where V is the common within-study population variance, N is the sample size accumulated across studies, T^2 is the estimate of the between-study variance, and k is the number of studies in the analysis.

These formulas are useful for highlighting the difference between the fixed-effect and random-effects model, but in practice we use more general versions of these formulas as explained in Appendix II and Appendix VII.

9.4.8. Future options

While researchers sometime confuse the confidence interval with the prediction interval, there are several ways to avoid this confusion. One option for a random-effects analysis is to report both the confidence interval and prediction interval, and then explain what each one means. It would also help to include the prediction interval on the plot (as in these examples). Over the longer term, it would helpful if the research community would adopt some conventions to display both the confidence interval and the prediction interval (J. P. Higgins et al., 2009; Riley, Higgins, & Deeks, 2011).
Summary

Researchers sometimes conflate the confidence interval with the prediction interval. The confidence interval is an index of precision, that tells us how precisely we have estimated the mean effect size. The prediction interval is an index of dispersion, that tells us how widely the effect size varies across populations. The two are entirely distinct from each other.
9.5. **Mistakes in using the I^2 statistic**

9.5.1. **Mistake**

It is widely believed that the I^2 statistic tells us how much the effect size varies across studies. In some cases, this belief is codified, with I^2 values of 25%, 50%, and 75% taken to reflect low, moderate, and high amounts of dispersion. While this interpretation of I^2 is ubiquitous, it is nevertheless incorrect, and reflects a fundamental misunderstanding of this index.

9.5.2. **Details**

To explain what I^2 is, I need to provide some background. In a meta-analysis, we need to distinguish between the true effects and the observed effects. The true effect size in any study is the effect size that we would see if we could somehow enroll the entire population in the study, so that there was no sampling error. The observed effect size is the effect size that we see in our sample. The observed effect size serves as an estimate of the true effect size, but invariably differs from the true effect size because of sampling error.

For reasons discussed in Appendix VIII, the variance of the observed effects tends to be larger than the variance of the true effects. For example, consider the analysis represented in Figure 36. In this figure, the outside curve reflects the distribution of observed effects, while the inner curve reflects the distribution of true effects.

Figure 36 | ADHD Analysis – True effects vs. Observed effects
When we ask about heterogeneity, we typically intend to ask, “How much does the true effect size vary across studies?”

- The prediction interval, which corresponds to line [C] in the plot, tells us that the true effect size in 95% of all populations will fall in the approximate range of 0.10 to 0.90. This is what we have in mind when we ask about heterogeneity.
- By contrast, the I^2 statistics tells us about the relationship between the two distributions. Concretely, I^2 is 47%, which tells us that the variance of true effects (the inner curve) is 47% as large as the variance of observed effects (the outer curve). This information is relevant for other purposes, but is tangential to the question of how much the effect size varies.

I present two sets of examples to illustrate this point. The first set uses the standardized mean difference as the effect size index. The second set uses the risk ratio as the effect size index. Aside from that, the two sets of examples are parallel to each other, and the reader should feel free to focus on either one.

9.5.3. Examples using the standardized mean difference

Castells et al. (2011) looked at 17 studies that evaluated the effect of methylphenidate on cognitive function in adults with ADHD. The effect size index is the standardized mean difference, with values greater than zero indicating that the drug increased cognitive function. The mean effect size is a standardized mean difference of 0.50, and I^2 is 47%.

Simpson, Rorie, Alper, and Schell-Busey (2014) looked at six studies that assessed the impact of interventions such as oversight to reduce corporate crime (people acting illegally on behalf of a company). The effect size index is the standardized mean difference, with values greater than zero indicating that the intervention was associated with a drop in crime. The mean effect size is a standardized mean difference of 0.10, and I^2 is 92%.

Most researchers would assume that there is less dispersion in the ADHD analysis (where I^2 is 47%) as compared with Crime analysis (where I^2 is 92%). However, it should be clear from Figure 37 that the opposite is true, since the distribution of effects for the ADHD analysis is obviously wider than the distribution of effects for the Crime analysis.

In each panel, line [C] corresponds to the prediction interval, which tells us the dispersion of true effects in the metric of the effect-size index. In the ADHD analysis (top panel) I^2 is 47% and the effects vary over 80 points. In
Mistakes in using the \(I^2 \) statistic 105

the Crime analysis (bottom panel) \(I^2 \) is 92% and the effects vary over 40 points. Thus, the higher value of \(I^2 \) corresponds to smaller amount of dispersion.

The fact that the higher value of \(I^2 \) corresponds to the smaller amount of dispersion will be confusing to researchers who assume that \(I^2 \) tells us how much the effect size varies. However, it will make sense for researchers who understand that \(I^2 \) is a proportion, not an absolute value. This becomes clear with reference to Figure 38. This is similar to Figure 37, but now each panel has two curves rather than one. The inner curve is identical to the one in the prior plot, and corresponds to the dispersion of true effects. But here, we have added an outer curve which corresponds to the dispersion of observed effects.

The top panel in Figure 38 shows the ADHD analysis. To quantify the difference between the inner and outer curves we can pick any point on the distribution and compare the width of one curve vs. the other. At line [C] the inner curve covers 77 points, whereas the outer curve covers 113 points. The ratio of inner to outer is thus 68% in linear units or 47% in squared units. This
is the meaning of I^2, which is defined as ratio of true to total variance (Appendix VIII).

Similarly, the bottom panel in Figure 38 shows the Crime analysis. To quantify the difference between the inner and outer curves we can pick any point on the distribution and compare the width of one curve vs. the other. At line [C] the inner curve covers 44 points, whereas the outer curve covers 46 points. The ratio of inner to outer is thus 96% in linear units or 92% in squared units. This is the meaning of I^2, which is defined as ratio of true to total variance (Appendix VIII).

If we want to know what proportion of the variance in observed effects is due to variance in true effects, the answer is provided by the ratio of the inner curve to the outer curve. In the top panel the ratio is 47% and in the bottom panel the ratio is 92%. (In the bottom panel the two lines are so close to each other, they might appear to be a single line). This is what I^2 tells us.

However, if we want to know how much the effect size varies, the answer is provided by the width of the inner curve in the metric of the analysis. In
the top panel the true effect size varies from roughly 0.10 in some populations to 0.90 in others, as indicated by line [C]. In the bottom panel the true effect size varies from −0.10 in some populations to +0.30 in others, as indicated by line [C]. When we are asking about the utility of an intervention, we almost invariably are interested in the *amount* of variance, not the *proportion*. As such, we are asking about the prediction interval, and not about \(I^2 \).

Finally, it might be helpful to show the relationship between these numbers and the actual forest plot for the two analyses.

Figure 39 shows the ADHD analysis. The general sense conveyed by the plot is that there is substantial dispersion in the observed effects, but also substantial sampling error (as reflected in the width of the confidence interval about most of the effect sizes). The sampling error can explain some 53% of the observed variance, and the remaining 47% reflects variance in true effects. This 47%, the *ratio* of true to total variance, is \(I^2 \). As a separate matter, if we want to know the dispersion of effects *on an absolute scale* we turn to line [C]. This corresponds to the prediction interval, and tells us that true effects vary from around 0.10 in some populations to 0.90 in others. This is the same as line [C] in the top panel of Figure 38.

Figure 40 shows the Crime analysis. The general sense conveyed by the plot is that there is only modest dispersion in the observed effects, but *very*
little sampling error in comparison. Critically, the ratio of sampling error to observed variance is small. The sampling error can explain only 8% of the observed variance, and the remaining 92% reflects variance in true effects. This 92%, the ratio of true to total variance, is I^2. As a separate matter, if we want to know the dispersion of effects on an absolute scale we turn to line [C]. This corresponds to the prediction interval, and tells us that true effects vary from around −0.10 in some populations to +0.30 in others. This is the same as line [C] in the bottom panel Figure 38.

9.5.4. Examples using risk ratios

Immediately above, I presented two examples where the effect-size index is the standardized mean difference. Here, I will make the same points using two examples where the effect-size index is the risk ratio.

Kasapis et al. (2009) looked at eight studies that evaluated the impact of a stent implantation on the failure rate for angioplasty. The effect size is a risk ratio, with ratios below one indicating that stents reduced the risk of failure. The mean risk ratio was 0.283, and I^2 is 56%.

Lin et al. (2013) looked at the effects of no-smoking laws on the risk of acute myocardial infarction. As recently as the 1990s, most cities allowed smoking in public spaces. Over the more recent decades, governments have passed laws that prohibit smoking in restaurants, workplaces, airports, and so on. A number of studies have been performed to see if the risk of having a heart attack changed when these laws were implemented. The effect size is a risk ratio, with ratios below one indicating a reduction in events. The mean risk ratio was 0.877, and I^2 is 92%.

Most researchers would assume that there is less dispersion in the Stents analysis (where I^2 is 56%) as compared with Smoking analysis (where I^2 is
92%). However, it should be clear from Figure 41 that the opposite is true, since the distribution of effects for the Stents analysis is obviously wider than the distribution of effects for the Smoking analysis.

In each panel, line [C] corresponds to the prediction interval, which tells us the dispersion of true effects in the metric of the effect-size index. In the Stents analysis (top panel) I^2 is 56% and the effects vary over 86 points. In the Smoking analysis (bottom panel) I^2 is 92% and the effects vary over 25 points. Thus, the higher value of I^2 corresponds to the smaller amount of dispersion.

The fact that the higher value of I^2 corresponds to the smaller amount of dispersion will be confusing to researchers who assume that I^2 tells us how much the effect size varies. However, it will make sense for researchers who understand that I^2 is a proportion, not an absolute value. This becomes clear with reference to Figure 42. This is similar to Figure 41, but now each panel has two curves rather than one. The inner curve is identical to the one in the prior plot, and corresponds to the dispersion of true effects. But here, we have added an outer curve which corresponds to the dispersion of observed effects.
The top panel in Figure 42 shows the Stents analysis. To quantify the difference between the inner and outer curves we can pick any point on the distribution and compare the width of one curve vs. the other. At line [C] the inner curve covers 86 points, whereas the outer curve covers 140 points. The ratio of inner to outer in squared units in the log metric is 56%. This is the meaning of I^2, which is defined as ratio of true to total variance (Appendix VIII).

Similarly, the bottom panel in Figure 42 shows the Smoking analysis. To quantify the difference between the inner and outer curves we can pick any point on the distribution and compare the width of one curve vs. the other. At line [C] the inner curve covers 25 points, whereas the outer curve covers 27 points. The ratio of inner to outer in squared units in the log metric is 92% (Appendix VIII). This is the meaning of I^2, which is defined as ratio of true to total variance.

If we want to know what proportion of the variance in observed effects is due to variance in true effects, the answer is provided by the ratio of the
Mistakes in using the I^2 statistic

inner curve to the outer curve. In the top panel the ratio is 56% and in the bottom panel the ratio is 92%. (In the bottom panel the two lines are so close to each other, they might appear to be a single line). This is what I^2 tells us.

However, if we want to know how much the effect size varies, the answer is provided by the width of the inner curve on the metric of the analysis. In the top panel the true risk ratio varies from roughly 0.08 in some populations to 0.96 in others, as indicated by line [C]. In the bottom panel the true effect size varies from 0.76 in some populations to 1.01 in others, as indicated by line [C]. This is what the prediction interval tells us. When we are asking about the utility of an intervention, we almost invariably are interested in the amount of variance, not the proportion. As such, we are asking about the prediction interval, and not about I^2.

Finally, it might be helpful to show the relationship between these numbers and the actual forest plot for the two analyses.

Figure 43 shows the Stents analysis. The general sense conveyed by the plot is that there is substantial dispersion in the observed effects, but also substantial sampling error (as reflected in the width of the confidence interval about most the effect sizes). The sampling error can explain some 44% of the observed variance, and the remaining 56% reflects variance in true effects. This 56%, the ratio of true to total variance, is I^2. As a separate matter, if we want to know the dispersion of effects on an absolute scale we turn to line [C]. This corresponds to the prediction interval, and tells us that true effects vary from around 0.08 in some populations to 0.96 in others. This is the same as line [C] in the top panel Figure 42.
Figure 44 shows the Smoking analysis. The general sense conveyed by the plot is that there is only modest dispersion in the observed effects, but even less sampling error. Critically, the ratio of sampling error to observed variance is small. The sampling error can explain only 8% of the observed variance, and the remaining 92% reflects variance in true effects. This 92%, the ratio of true to total variance, is I^2. As a separate matter, if we want to know the dispersion of effects on an absolute scale we turn to line [C]. This corresponds to the prediction interval, and tells us that true effects vary from around 0.76 in some populations to 1.01 in others. This is the same as line [C] in the bottom panel Figure 42.
9.5.5. Words matter

The I^2 statistic is defined as being a proportion, not an absolute amount of dispersion. A proportion and an absolute amount are two different things. Nevertheless, researchers often define I^2 (correctly) as being a proportion or percentage, and then ignore this definition and speak about I^2 (incorrectly) as being an index of dispersion on an absolute scale. This is an important issue because if we paid attention to the words, we would avoid the mistake of misinterpreting I^2.

Consider the following examples.

9.5.6. Example | Drugs for ADHD

Cunill, Castells, Tobias, and Capellà (2016) looked at the impact of drugs on ADHD. They write “Between-study heterogeneity was assessed using Cochran’s Q test (Cochran 1954) jointly with the I^2 index (Higgins et al. 2003), which enables the percentage of variation in the combined estimate that can be attributed to heterogeneity to be established (< 25%: low heterogeneity; 25 to 50 %: moderate; 50-75%: high; > 75%: very high).” The first part of the sentence defines I^2 as a percentage of variance. The part in parentheses suggests that I^2 is an index of absolute variance (e.g., “low heterogeneity”). These are two different things. If I^2 is the first (which it is) then logically it cannot also be the second.

9.5.7. Example | Exercise for chronic back pain

Ferreira, Smeets, Kamper, Ferreira, and Machado (2010) performed a meta-analysis that looked at the impact of exercise for chronic back pain. They write “Therefore, the [sic] I^2 provides the percentage [italics in the original] of total variation across studies explained by heterogeneity rather than chance (J. P. Higgins, Thompson, Deeks, & Altman, 2003). For instance, an I^2 of 0% indicates that all variability in effect estimates is due to sampling error and not to heterogeneity among trials. Conversely, an I^2 of 75% suggests that three quarters of the variability in effect estimates can be attributed to inconsistency among trials. An I^2 value of more than 75% was considered to represent high heterogeneity, an I^2 of 50% to 75% was considered to represent moderate heterogeneity, and an I^2 of less than 25% was considered to represent low heterogeneity.” The word “percentage” is italicized in the original to emphasize the fact that this is a percentage, but the authors nevertheless proceed to treat the index as an absolute value. Ironically, the
focus of this paper is on the heterogeneity in effects, and so the fact that they use the wrong index to discuss heterogeneity is especially problematic.

9.5.8. In context

Hundreds of papers define I^2 as a proportion and then proceed to interpret it as an absolute value. This is the statistical equivalent of someone in a car dealership being told that they will need to pay only 80% of the usual price, and then trying to pay $80 for the car. A proportion and an absolute value are not the same thing.

9.5.9. Using the I^2 statistic correctly

While I^2 does not tell us how much the effect size varies, it is useful for the following purposes (Borenstein et al., 2017; J. P. Higgins & Thompson, 2002; J. P. Higgins et al., 2003).

- If I^2 is zero, then all the variance in observed effects is due to sampling error. The variance in true effects is estimated as zero.
- If we are looking at a forest plot, I^2 provides context for understanding that plot. If I^2 is near zero, the variance of true effects is only a small fraction of that suggested by the plot. As I^2 increases, that proportion increases.
- If we are working with a set of meta-analyses where the variance of observed effects is reasonably consistent, there will be a strong correlation between I^2 and the absolute amount of variance. Within that context, I^2 can provide information about the relative amounts of dispersion across analyses.
- The I^2 statistic is useful to statisticians who are evaluating the properties of various statistics. For example, if someone wanted to run simulations to see how statistical power is affected by the ratio of true to total variance, they could do so for various values of I^2.
- Sometimes, we do care about the proportion of variance rather than the absolute amount of variance. For example, if we have various ways of conducting studies and we want to know which have the smallest amount of sampling error, I^2 is the index that allows us to address this question.
9.5.10. Further readings

The original papers on I^2 are (J. P. Higgins & Thompson, 2002; J. P. Higgins et al., 2003). For a more detailed discussion of the issues raised in this section, see (Borenstein et al., 2017). For related papers see (Borenstein, 2019; Coory, 2010; J. P. Higgins, 2008; Huedo-Medina, Sanchez-Meca, Marin-Martinez, & Botella, 2006; Ioannidis, 2008a; Patsopoulos, Evangelou, & Ioannidis, 2008; Rucker, Schwarzer, Carpenter, & Schumacher, 2008).

Summary

When we ask about heterogeneity, we intend to ask how much the true effect size varies across studies. This question is addressed by the prediction interval which tells us (for example) that the true effect size in most populations will fall in the range of 0.05 to 0.95. It is not addressed by the I^2 statistic. The I^2 statistic tells us what proportion of the variance in observed effects reflects variation in true effects, rather than sampling error. It does not tell us how much variation there is.
9.6. Classifying heterogeneity as low, moderate or high

9.6.1. Mistake

In some fields of research, it is common for papers that report I^2 to categorize the heterogeneity as being low, moderate or high, based on the I^2 value. This is a fundamental mistake.

9.6.2. Details

Immediately above, I showed that I^2 is a proportion, not an index of absolute dispersion. It does not tell us how much the effects vary. Since I^2 does not tell us how much the effects vary, the idea of using I^2 to create categories of dispersion is a non-sequitur.

Figure 45 | Distribution of true effects for two meta-analyses
The example discussed earlier (section 9.5.3) is re-displayed in Figure 45. The top panel shows the impact of methylphenidate on the cognitive function of adults with ADHD. The bottom panel shows the impact of interventions to reduce corporate crime. In the top panel I^2 is 47% and in the bottom panel I^2 is 92%, so based on the proposed classifications we would say that the heterogeneity at the top is moderate while that at the bottom is high. This obviously makes no sense, since the dispersion in the top panel is substantially greater than the dispersion in the bottom panel.

Similarly, the example discussed earlier (section 9.5.4) is re-displayed in Figure 46. The top panel shows the impact of stents on the risk of failure in angioplasty. The bottom panel shows the impact of anti-smoking legislation to reduce the risk of myocardial infarction. In the top panel I^2 is 56% and in the bottom panel I^2 is 92%, so based on the proposed classifications we would say that the heterogeneity at the top is moderate while that at the bottom is high. This obviously makes no sense, since the dispersion in the top panel is substantially greater than the dispersion in the bottom panel.
Since I^2 does not tell us how much the effects vary, it obviously cannot be used to classify analyses as having a low, moderate, or high amount of variation. However, there is an additional point to be made. Let us assume for a moment that I^2 actually told us the amount of variation. What does it mean to say that a particular amount of dispersion is low, moderate, or high, unless we put that dispersion in the context of a specific outcome? Consider the following four examples.

9.6.3. **Example | Allegiance to treatment**

Munder, Fluckiger, Gerger, Wampold, and Barth (2012) performed a meta-analysis to see if the researchers’ allegiance to one treatment vs. another would bias the outcome in studies that compared the two treatments. The effect size index is the standardized mean difference. They write “In addition, we report I^2 as another common quantitative measure of heterogeneity, which can be interpreted as the percentage of overall heterogeneity that is due to variation of the true effects. An I^2 value of 0% indicates no heterogeneity. I^2 values of 25%, 50%, and 75% can be regarded as markers of low, moderate, and strong heterogeneity, respectively (Higgins, Thompson, Deeks, & Altman, 2003).”

9.6.4. **Example | Prevalence of pelvic-floor disorders**

Islam et al. (2017) published the protocol for a meta-analysis to assess the prevalence of pelvic-floor disorders in women in low and middle-income countries. The effect size index is the prevalence of the disorder. They plan to use values of I^2 to classify the heterogeneity as being low, moderate, or high.

9.6.5. **Example | Preventing substance abuse**

Onrust, Otten, Lammers, and Smit (2016) performed a meta-analysis to assess the impact of interventions to prevent substance abuse. The effect size index is the standardized mean difference. They used values of I^2 to classify the heterogeneity as being low, moderate, or high.
9.6.6. Example | Exercises for back pain

Ferreira et al. (2010) report on a meta-analysis to assess the impact of exercises for back pain. The effect size index is the difference in means. They used values of I^2 to classify the heterogeneity as being low, moderate, or high.

9.6.7. In context

The idea of classifying the amount of heterogeneity based on I^2 would only make sense if I^2 was an index of absolute dispersion, and it is not. Therefore, the whole idea is a non-starter.

Additionally, even if the classifications were based on an index of absolute dispersion (such as T) the idea that we can have classifications of low, moderate or high variance that apply universally, makes no sense. This would require that a similar amount of variance has the same substantive meaning for an analysis of allegiance to treatment, an analysis of the prevalence of pelvic-floor disorder, an analysis of interventions to prevent substance abuse, and an analysis of the impact of exercises on back pain – among thousands of other analyses.

Indeed, the suggestion is not merely that (for example) 50% is a moderate amount of heterogeneity for risk ratios. The suggestion is that it is a moderate amount of heterogeneity for risk ratios, mean differences, prevalence, and even simple means in one-arm studies. A moment’s reflection should make it clear that this idea makes no sense without additional context.

Where did these classifications originate?

When J. P. Higgins et al. (2003) proposed a link between values of I^2 and absolute amount of dispersion, that was for a specific context. The authors were primarily concerned with the Cochrane Database of systematic reviews, and the dispersion of observed effects tended to be reasonably consistent across analyses. In that situation, a meta-analysis with a low value of I^2 tended to have less dispersion in effects as compared with a similar analysis that had a higher value of I^2, and the labels were intended to capture this. The idea that these labels could somehow capture the amount of dispersion in analyses outside of the Cochrane database was never their intent.
Summary

The idea of using I^2 to classify heterogeneity as being low, moderate, or high makes no sense for two reasons.

First, I^2 is a proportion, not an index of absolute dispersion. It does not tell us how much variance there is.

Second, the idea that we can classify heterogeneity into categories without additional context is silly, since an amount of heterogeneity that would be considered high in one context would be considered low in another.
9.7. Using the p-value as index of heterogeneity

9.7.1. Mistake

Researchers typically report a test for heterogeneity as part of a meta-analysis. Some researchers assume that the test for heterogeneity speaks to the amount of dispersion in the effects. A non-significant p-value is interpreted as evidence that the effects are consistent, and a significant p-value is taken as evidence that the effects vary in some substantive way. This is a mistake.

9.7.2. Details

A meta-analysis typically includes a test for heterogeneity. The null hypothesis for this test is that there is no variation at all in true effect sizes. The test statistic (Q) along with its degrees of freedom yields a p-value. A significant p-value allows us to reject this null hypothesis, and to conclude that the effect size does vary across studies. The criterion alpha for this test is conventionally set at 0.05 in some disciplines, and at 0.10 in others (Berman & Parker, 2002; Petitti, 2001).

As is true for all null-hypothesis significance tests, the only information provided by a significant p-value is that the variation in effects size is probably not zero (more correctly, if the true heterogeneity is zero, it would be unusual to see a test statistic this high or higher).

The p-value for the test of heterogeneity is a function of three items –

1. The estimated amount of heterogeneity
2. The precision of the individual studies
3. The number of studies

If there are many studies (and/or large studies) the p-value might be statistically significant even if the amount of heterogeneity is trivial. Conversely, if there are few studies (and/or small studies) the p-value might not be statistically significant even if the amount of heterogeneity is substantial. For this reason, the p-value cannot serve as a surrogate for the amount of variation.

Two examples will make this clear.
9.7.3. Example | Impact of preoperative statin therapy

Liakopoulos et al. (2008) looked at the impact of preoperative statin therapy on the incidence of stroke in patients undergoing cardiac surgery (Figure 47). The effect size is the odds ratio, with values less than 1.0 indicating that the treatment was helpful. The mean effect size is 0.741, which tells us that the treatment reduces the odds of a stroke by 74% on average. The test for heterogeneity yields a Q-value of 9.105 with 5 degrees of freedom, and a p-value of 0.105. If someone simply looked at the non-significant p-value, they might assume that there was only a small amount of heterogeneity.

In fact, the results suggest that there may be substantial heterogeneity. The prediction interval $[C]$ is 0.32 to 1.71, which tells us that in some populations the treatment reduces the odds of a bad outcome by 68%, while in others it increases the odds of a bad outcome by 71%.

The p-value is a function of (1) the estimated amount of dispersion (2) the number of studies and (3) the precision of those studies. In this case our best estimate is that there is substantial dispersion. However, the p-value is not significant primarily because there are only a few studies, and these are not terribly precise.

9.7.4. Example | Impact of smoke-free legislation

Lin et al. (2013) looked at the impact of smoke-free legislation on acute myocardial infarction (MI) (Figure 48). The mean risk ratio was 0.877, which indicates that the risk of MI was reduced on average by some 12%. The test for heterogeneity yields a Q-value of 431.106 with 36 degrees of freedom and a p-value of < 0.0000000001. If someone simply looked at the significant p-
value, they might assume that there was an exceptional amount of heterogeneity.

However, that is not the case here. In fact, the amount of heterogeneity was modest. The prediction interval $[C]$ is 0.75 to 1.02, which tells us that in some populations, the treatment reduces the risk of a bad outcome by 25%, while in others it increases the risk of a bad outcome by 2%.

The p-value is a function of (1) the estimated amount of dispersion (2) the number of studies and (3) the precision of those studies. In this case the amount of dispersion is modest. The p-value is statistically significant primarily because of there are many studies, and many of these are precise.

Figure 48 | Smoke-free legislation |Risk ratio < 1 indicates reduced risk

Figure 49 allows us to compare these two analyses. In this figure, the top plot corresponds to the statin analysis where the p-value for a test of heterogeneity is 0.105 but there the estimated dispersion is substantial. The bottom plot corresponds to the smoking analysis where the p-value for a test of heterogeneity is 0.0000000001 but the estimated dispersion is relatively small. Additional details are presented in Table 3.

As in these examples, the p-value tells us nothing about the amount of dispersion. Indeed, it does not even tell us which of two analyses had more dispersion.

Table 3 | Heterogeneity in two analyses

<table>
<thead>
<tr>
<th>Study</th>
<th>Index</th>
<th>Mean</th>
<th>p-value</th>
<th>Prediction Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>Odds ratio</td>
<td>0.74</td>
<td>0.105</td>
<td>0.32 to 1.71</td>
</tr>
<tr>
<td>Smoking</td>
<td>Risk ratio</td>
<td>0.88</td>
<td>< 0.0000000001</td>
<td>0.75 to 1.02</td>
</tr>
</tbody>
</table>
Using the *p*-value as an index of heterogeneity

Summary

The *p*-value for a test of heterogeneity is a function of (1) the estimated amount of heterogeneity, (2) the precision of the individual studies, and (3) the number of studies in the analysis.

The *p*-value may be statistically significant when the estimated heterogeneity is trivial. Conversely, the *p*-value may not be statistically significant when the estimated heterogeneity is substantial. Therefore, the *p*-value should never be used as a surrogate for the amount of heterogeneity.
9.8. Using the Q-value as index of heterogeneity

9.8.1. Mistake

Researchers sometimes use the Q-value as an index of dispersion, and assume that a large Q-value reflects a substantial amount of heterogeneity. This is a mistake.

9.8.2. Details

The Q-value is not an index of dispersion. Rather, it is simply the sum of squared deviations, on a standardized scale. The Q-value in a meta-analysis serves a similar function to the sum of squares in a primary study. In a primary study we compute the sum of squares as an interim step to computing the variance and the standard deviation. By itself, the sum of squares tells us nothing useful about the dispersion.

The issues here are similar to those outlined for the p-value in the prior section. Specifically, the value of Q depends on

1. The amount of observed heterogeneity
2. The precision of the individual studies
3. The number of studies

If there are many studies (and/or large studies) the Q-value might be high even if the amount of observed heterogeneity is trivial. Conversely, if there are few studies (and/or small studies) the Q-value might be low even if the amount of heterogeneity is substantial. For this reason, the Q-value cannot serve as a surrogate for the amount of variation.

To assume that the Q-value tells us something about the extent of dispersion in a meta-analysis is analogous to assuming that the sum of squares tells us something about the extent of dispersion in a primary study. In a primary study, the sum of squares (by itself) does not provide that information. In a meta-analysis the value of Q (by itself) does not provide that information.

The two examples in the immediately prior section (9.7) can serve here as well.
9.8.3. Example | Impact of preoperative statin therapy

Liakopoulos et al. (2008) looked at the impact of preoperative statin therapy on the incidence of stroke in patients undergoing cardiac surgery (Figure 50). The effect size is the odds ratio, with values less than 1.0 indicating that the treatment was helpful. The mean effect size is 0.741, which tells us that the treatment reduces the odds of a stroke by 74% on average. The test for heterogeneity yields a Q-value of 9.105 with 5 degrees of freedom, and a p-value of 0.105. If someone simply looked at the small Q-value, they might assume that there was only a small amount of heterogeneity.

In fact, the results suggest that there may be substantial heterogeneity. The prediction interval $[C]$ is 0.32 to 1.71, which tells us that in some populations the treatment reduces the odds of a bad outcome by 68%, while in others it increases the odds of a bad outcome by 71%.

The Q-value is a function of (1) the amount of observed dispersion, (2) the number of studies and (3) the precision of those studies. In this case, our best estimate is that there is substantial dispersion, but the Q-value is small primarily because there are only a few studies, and these are not terribly precise.

![Figure 50](image)

Figure 50 | Preoperative statin therapy | Odds ratio < 1 favors treatment

9.8.4. Example | Impact of smoke-free legislation

Lin et al. (2013) looked at the impact of smoke-free legislation on acute myocardial infarction (MI) (Figure 51). The mean risk ratio was 0.877, which indicates that the risk of MI was reduced on average by some 12%. The test for heterogeneity yields a Q-value of 431.106 with 36 degrees of freedom and a p-value of < 0.0000000001. If someone simply looked at the magnitude of
the Q-value, they might assume that there was an exceptional amount of heterogeneity.

However, that it not the case here. In fact, the amount of heterogeneity is modest. The prediction interval $[C]$ is 0.75 to 1.02. This tells us that in some populations, the treatment reduces the risk of a bad outcome by 25%, while in others it increases the risk of a bad outcome by 2%.

The Q-value is a function of (1) the amount of observed dispersion, (2) the number of studies and (3) the precision of those studies. In this case, our best estimate is that there is only modest dispersion, but the Q-value is high primarily because there are many studies, and many of these are precise.
Using the Q-value as an index of heterogeneity

Figure 52 allows us to compare these two analyses. In this figure, the top plot corresponds to the statin analysis where the Q-value is 9.105 but there is substantial dispersion in effects. The bottom plot corresponds to the smoking analysis where the Q-value is 431.106 but the amount of dispersion is relatively small. Additional details are presented in Table 4.

It should be obvious from these examples that the Q-value (even when paired with its degrees of freedom) does not tell us how much the effect size varies across studies.

Table 4 | Heterogeneity in two analyses

<table>
<thead>
<tr>
<th>Study</th>
<th>Index</th>
<th>Mean</th>
<th>Q</th>
<th>df</th>
<th>Prediction Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>Odds ratio</td>
<td>0.74</td>
<td>9.1</td>
<td>5</td>
<td>0.32 to 1.71</td>
</tr>
<tr>
<td>Smoking</td>
<td>Risk ratio</td>
<td>0.88</td>
<td>431.1</td>
<td>36</td>
<td>0.75 to 1.02</td>
</tr>
</tbody>
</table>

Figure 52 | Distribution of true effects for two meta-analyses

Q = 9.1, df = 5

Q = 431.1, df = 36
9.8.5. \textit{Q} does tell us one thing about the dispersion

The Q-value does provide one item of information about the heterogeneity. If Q is less than the degrees of freedom (the number of studies minus one), the variance will be estimated as zero. Conversely, if Q exceeds the degrees of freedom, the variance will be estimated as positive. However, that is the only information we can get directly from Q and the degrees of freedom. To press Q into service as an index of dispersion would be a mistake.

\begin{summary}

The Q-value for a test of heterogeneity is a function of (1) the amount of observed heterogeneity, (2) the precision of the individual studies, and (3) the number of studies in the analysis.

The Q-value may be large when the estimated heterogeneity is trivial. Conversely, the Q-value may be small when the estimated heterogeneity is substantial. Therefore, the Q-value should never be used as a surrogate for the amount of heterogeneity.

\end{summary}
9.9. Estimates of variance may not be reliable

9.9.1. Mistake

In any random-effects analysis we compute an estimate of the between-study variance, and that estimate will differ from the true value. While researchers are aware of this in general, many do not recognize the potential severity of the problem.

9.9.2. Details

In the textbook case of a random-effects analysis we enumerate a universe of studies, sample studies from that universe, and generalize our results to that universe. The variance of true effects in that universe is called \(\tau^2 \), where we use the Greek letter to indicate that this is the parameter (the true value). We can never see that value, but (in a frequentist analysis) we estimate it using the data in our sample, and the estimate is called \(T^2 \). It is important to recognize that \(T^2 \) does not always provide a reliable estimate of \(\tau^2 \).

It might help to draw an analogy to a primary study employing a between-group design. Typically, this type of primary study reports the variance and standard deviation of scores based on a sample of at least 30 participants. In some fields the typical sample size is substantially higher, but it is generally not much lower than 30. If someone tried to publish a paper for a between-group design study based on a sample size of five subjects (for example), we would (rightfully) be concerned that the statistics were not reliable.

Suppose that we perform a random-effects meta-analysis using five studies with a hundred people in each. Researchers sometime assume that the effective sample size is five hundred people. In fact, however, the estimates of the mean and variance are based on an effective sample size of (less than) five. And, just as a sample size of five people will generally not yield a reliable estimate of the between-person variance in a primary study, a sample size of five studies will generally not yield a reliable estimate of the between-study variance in a meta-analysis.

The precision with which we can estimate \(\tau^2 \) is a function of the true value of \(\tau^2 \), of the number of studies in the analysis, and of the error variance in those studies. If all the estimation error variances are equal to \(V_M \) and the effects are normally distributed, the exact variance of the method of moments estimator of \(\tau^2 \) is given by
\[\sigma^2_{\tau^2} = \frac{2(V_M + \tau^2)^2}{k-1} , \] (9)

where \(V_M \) is the within-study error variance (assumed to be the same for all studies), \(\tau^2 \) is the true between-study variance, and \(k \) is the number of studies. It follows that if \(V_M \) and/or \(\tau^2 \) are non-trivial, the estimate of \(\tau^2 \) will have poor precision unless we have a substantial number of studies.

The same issue applies to all the statistics that we employ to quantify heterogeneity, including \(T^2, T, I^2 \), and the prediction interval. Thus, we cannot mitigate this problem by switching to an alternate index. When we expect that the heterogeneity is non-trivial and we have a small number of studies, the best course of action is to report the extent to which our estimates are unreliable.

Ironically, while this lack of precision affects all the statistics, the practical implications of this problem are most serious for the prediction interval. Since researchers generally misinterpret the meaning of \(I^2 \) and \(T^2 \), if we estimate these values incorrectly, there is little additional harm done. By contrast, researchers do understand the prediction interval, and if this interval is wrong, researchers may reach the wrong conclusions. For this reason, it is probably best to report the prediction interval only if it is based on at least ten studies.

Summary

We need a reasonable number of studies to estimate heterogeneity reliably. If we don’t have a sufficient number of studies, all heterogeneity statistics are suspect.
9.10. Statistics for heterogeneity refer to fixed-effect model

9.10.1. Mistake

Some computer programs report statistics for Q, I^2, and T^2, on the line for the fixed-effect analysis. Researchers sometimes assume that these statistics apply to the fixed-effect analysis, and then wonder where they can find these values for the random-effects analysis. This is a mistake.

9.10.2. Details

There is only one estimate for the Q-value reported in a meta-analysis. Based on this estimate we generate various statistics, some of which apply to the fixed-effect model and some of which apply to the random-effects model.

The p-value applies to the fixed-effect model. This model requires that all studies share a common effect size, and if the p-value is statistically significant we conclude that this assumption has been violated.

While the p-value applies to the fixed-effect model, all estimates of variance (T^2, T, and I^2) apply to the random-effects model. Importantly, these estimates apply only to the random-effects model, since under the fixed-effect model these are all zero by definition.

The reason that some computer programs display these statistics adjacent to the fixed-effect estimates is because the statistics are computed using a model where T^2 is zero, and this happens to correspond to the weights used for the fixed-effect model. The decision to display these statistics in one section or another is of no consequence.

9.10.3. Example | Serotonin-Aggression relation

Duke, Bègue, Bell, and Eisenlohr-Moul (2013) ran a meta-analysis looking at the Serotonin-Aggression relation in humans. They wrote “Mean weighted effect sizes are presented for both fixed-effects and random-effects models with estimates of heterogeneity (Q and I^2 statistics) derived from the fixed-effects model (Italics added).” The phrase in italics is misleading, and it would be better to omit this phrase.
Summary

Researchers sometimes expect that there is one set of heterogeneity statistics for the fixed-effect model and a separate set for the random-effects model. In fact, we compute only one set of statistics. These statistics are computed using fixed-effect weights, but some apply to the fixed-effect model and others to the random-effects model.
9.11. Putting it all together

When we ask about heterogeneity in a meta-analysis, our goal is to understand the clinical or substantive implications of the heterogeneity. We need to know if the treatment’s effect is relatively consistent across studies, or if it varies substantially. We need to know if the treatment is always helpful, or if it is helpful in some populations and harmful in others.

A case in point is the impact of methylphenidate on adults diagnosed with ADHD. The mean effect is a standardized mean difference of roughly 0.50, but to understand the potential utility of this drug we need to also know how much the effect size varies. When we ask about heterogeneity, we intend to ask if the distribution of effects resembles Figure 53, Figure 54, or Figure 55.

Is it the case that –

A. The impact is as low as 0.40 in some populations, and as high as 0.60 in others (Figure 53).
B. The impact is as low as 0.30 in some populations, and as high as 0.70 in others (Figure 54).
C. The impact is as low as 0.10 in some populations, and as high as 0.90 in others (Figure 55).

When we discuss the utility of the drug, this is what we have in mind. Some might suggest that the drug should be recommended for general use only if the dispersion looks like Figure 53, while others might suggest that it should be recommended immediately even if the dispersion looks like Figure 54 or Figure 55. What should be clear, though, is that this discussion should be based on the dispersion represented in these figures.

The one statistic that directly addresses this dispersion is the prediction interval. In this example the prediction interval is 0.05 to 0.95. This tells us that the effect size varies from as low as 0.05 in some populations to as much as 0.95 in others (corresponding roughly to Figure 55). The prediction interval addresses this question using the same scale as the effect size, so the information is unambiguous. It tells us not only how much the effect size varies, but also reports the interval on a meaningful scale. Not only does it tell us that the effects vary over 90 points. It also tells us that it varies from 0.05 to 0.95 rather than (for example) −0.45 to +0.45 or 0.50 to 1.40.
Figure 53 | Effect size varies from 0.40 to 0.60

Figure 54 | Effect size varies from 0.30 to 0.70

Figure 55 | Effect size varies from 0.10 to 0.90
Unfortunately, researchers rarely report the prediction interval. Rather, they typically report statistics such as Q, p, I^2, and T^2 which do not allow us to determine whether the dispersion looks like Figure 53, Figure 54, or Figure 55. Worse, researchers often push these statistics into service as surrogates for the amount of dispersion, and reach incorrect conclusions.

In some fields, the I^2 statistic has become ubiquitous as the preferred index of dispersion. This is a fundamental misinterpretation of this statistic. The I^2 statistic is a proportion, not an absolute value. It tells us what proportion of the observed variance reflects variation in true effects, rather than sampling error. It does not tell us how much that variance is. It makes no sense to make a recommendation about the drug based on the fact that I^2 is 47%, because that value could correspond to any of the three figures pictured, or to others.

This misuse of I^2 has been compounded by the fact that I^2 is commonly used to classify heterogeneity as being low, moderate, or high. This idea makes no sense for two reasons. First, the categories are based on I^2, which does not correspond to an absolute amount of dispersion. Second, the idea that we can classify heterogeneity as low, moderate, or high without additional context is silly, since an amount of heterogeneity that would be considered low in one context would be considered high in another.

Finally, it is important to recognize that estimates of T^2, and by extension estimates of all indices for heterogeneity, are often imprecise. It is probably best to report the prediction interval only when the analysis includes at least ten studies. While the imprecision affects all the indices, the practical implications of a mistake are potentially more serious for the prediction interval since this is an index that researchers would be using to make decisions.

When there is a sufficient number of studies to report a useful estimate of the prediction interval, we should report it. When we cannot report a useful estimate of this interval it would be best to omit it, and explain why.